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The density and character of the quantum states in the impurity band arising 
from broadening of the local impurity level are studied. When the impurity 
concentration is small, the energy levels and states in the impurity band admit 
an apparent geometric systematics in the main approximation. In this 
systematics, the wave functions are localized at one or two centers, though the 
energy levels depend on the positions of orther centers. The density of states and 
the space correlators calculated in the main approximation are of universal 
nature, i.e., are represented in a certain scale as universal functions independent 
of the concentration. In the immediate vicinity of the local level, where in terms 
of the geometric systematics the density of states has a gap, different states 
become significant, which collectivize a larger number of centers. They fill the 
gap, the filling degree essentially depending on the impurity concentration. The 
general structure of the impurity band spectrum is discussed. 

KEY WORDS:  Impurity band; structural disorder; density of states; 
localization; correlating functions. 

1. INTRODUCTION 

The problem of the nature of the spectrum in the impurity band arising from 
local impurity level broadening was earlier studied by one of the authors. (1) 
In this paper, following up Ref. I, we are going, firstly, to describe the 
method and results of the respective section of Ref. 1 more consistently and 
from a somewhat different point of view and, secondly, to obtain some new 
results on the density of states structure and the nature of states at the band 
center, and also the properties of the density--density correlation function. 
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The contents of the paper is as follows. In Section 2 we briefly describe 
the model and derive the basic equation for the excitation spectrum. For low 
impurity concentration the equation permits us to build up an apparent 
geometric systematics of the levels and states, which is the subject of 
Section 3. In Section 4, diagrams are constructed by which the levels and 
states are classified that are described by the geometric systematics of 
Section 3. The statistical properties of such diagrams are analyzed in 
Section 5. Section 6 contains calculation of the density of states in the main 
approximation corresponding to the geometric systematics; the same approx- 
imation is used in Section 7 to obtain an expression for the density-density 
correlation function. One of the findings of Ref. 1 was the existence of a gap 
of the density of states at the band center in the main approximation. 
Section 8 presents a more detailed analysis of the spectrum equation which 
suggests that the gap in the band center density of states is filled to a large 
extent and with states which are not given by the geometric systematics. 
Finally, Section 9 contains a discussion of the general structure of the 
impurity band spectrum. 

2. MODEL 

We shall proceed from the set of equations ~1'1) 

x~  1 exp(--txjk) ~ k = etyj (1) 
k4-j 

for "projections" qt i of the electron wave functions qJ(x) on the one-center 
states q/(x - xj). Here t = kol >> 1 is the large parameter of the theory, which 
is related to the dimensionless impurity concentration e as e = t -3;  l is the 
mean impurity separation, k 0 is the inverse radius of the one-center states 
~,(~ x = r 1 - 1  is the dimensionless coordinate, x i are impurity random 
coordinates, and the energy parameter e is proportional to the distance 
E -  E 0 to the one-center local level E o. In the configurations of the general 
position in this model the separations of the nearest-neighboring centers are 
of the order of 1: xjk = ]xj - xk] ~ 1 and therefore the main contribution to 
the density of states is due to the energy range ]ln el ~ t >> 1. 

Let us first consider the auxiliary problem on the spectrum of an infinite 
system with a finite number N of impurities which occupy the volume IT. In 
the typical situation, Nl 3~ V, and inequalities Nl3>> V and Nl3 ~ V 
correspond to dense and rarefied fluctuations, respectively. The former are 
responsible for the spectrum in the region l el >> [e(/)l, the latter for the states 
in the immediate vicinity of the local level lel ~ le(l)q [e(r) is some of pair 
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levels in an infinite system with two impurities situated at points 0, r]. The 
equation for the spectrum in the model (1) is as follows: 

det [r--eCSjk + (1 - (~jk)xj-k 1 exp(--tXak)l I = 0 (2) 

Expansion of this determinant in powers of e gives 

N 
e N + X~ eU-"Q.  = 0 (3) 

n = 2  

The coefficients Q. are sums 

- V Q~k~(F~k~) 
k 

whose terms are 

I (m) exp[--tf(F~(m))] 
Q~k~(r~k)) = (_l)Jk ~m~ 

W' p (m)  = n 

In these expressions F~ k) is an n-polygon (generally speaking, multiply 
connected) with the vertices at n separate points occupied by the impurities, 
subscript k is the number of the individual n-polygon. Each of them consists 
of Jk simple loops F~'m)) (m = 1, 2 ..... Jk) which are specified by their 
respective vertices and the order of numbering. Finally, f(F~m))) is the 
perimeter and ~ Z / ( F ~ , )  the product of the F~'m~) loop side lengths. 

Such structure of the coefficients Q,, leads for t ~ oe (limiting case of 
small concentration) to an apparent geometric systematics of levels and 
states. Considering t as the largest parameter of the problem, we shall up to 
Section 8 neglect the extremely small probability degenerate situations of any 
sort (in particular, those associated with coincidence of perimeters of various 
n-polygons F~ k) to within t-1). Therefore each of the coefficients Q, depends 
mainly on the contribution of only one n-polygon F,  which has the minimum 
perimeter, i.e., 

Q. = x.  exp(- tL. )  (4) 

where L .  is, to within the terms of the order of t -I ,  the perimeter of the 
minimum contour Fn: 

L,, ~ L n = min f ( F ~  k)) = f ( F n )  
k 
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and x,  is plus or minus unity, according to whether it is an even or odd 
number of loops that Fn having the minimum perimeter consists of. Finally, 
introducing a new energy variable s, 

e = a e x p ( - t s ) ,  a = + l ,  s = - t  'lnl~l (5) 

write Eq. (3) as 

N 

1 + ~ K~o" e x p [ - t ( L .  - ns)] = 0 (6) 
n = 2  

3. GEOMETRIC SYSTEMATICS OF LEVELS AND STATES 

For an arbitrary s value, all the terms in this equation are of different 
orders of magnitude with respect to the parameter e -t,  and the whole deter- 
minant, i.e., the left-hand side of Eq. (6), is nonzero, since it is determined by 
the only one, maximal, summand (in particular for s = 0, the first one). As s 
increases, the exponents in Eq. (6) grow the more rapidly, the larger n is. 
Therefore, if for certain s = s I the larger order of magnitude is found in the 
term containing n = n t, then the nearest root s 2 > s t of Eq. (6) will appear as 
soon as any of the exponents of subsequent terms with the number n2 > n~ 
becomes equal to t ( n l S 2 - L , 1 )  for the first time. Coincidence of a larger 
number of exponents is another example of degeneracy. Since it has rather 
small probability for t > 1, we shall neglect it. Besides, for t ~  m,  L n may be 
identified with the minimum perimeter L , .  Having the exponents equal, we 
find s 2, that is, the absolute value le21 of the dimensionless energy, its sign 
being defined by the respective coefficients xn, tG2 in Eq. (6). 

Thus, in variables s, o, after having passed to the limit t ~  m,  we arrive 
at an apparent geometric systematics of levels and states, specified by a 
sequence of n-polygons with minimum perimeters whose vertices are at 
points where impurities stay. The approximation corresponding to such 
systematics will below be called main and is the subject of Sections 3-7. 

Introduce 

a n = L n +  1 --Ln, 2b n = L n +  2 - -Ln  

Then the roots of Eq. (6), as is readily seen, are specified every time by one 
of the following two relations: 

s = a .  (I) 

s = b. (II) 
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representing two cases of appearance of a pair of maximum exponents: 

(1l -b 1)S - -  L n +  1 -=- ns  - L n (I) 
(7) 

(n + 2 ) s - - L , + 2  = n s - - L ,  (II) 

There are no more cases, since if two maximum exponents have appeared 
whose numbers differ by more than 2, then the total number of real roots of 
Eq. (6) will be smaller than the number of impurities, which is impossible 
because of the Hermitian character specified by the left-hand side of Eq. (2). 

The process of origination of the roots of Eq. (6) may be clearly 
illustrated geometrically (Fig. 1). Consider a set of points with coordinates 
(n, Ln), n >~ 2, and construct, starting from the coordinate origin, a convex 
envelope of this set y ( n ) .  Then Eq. (7) means that the envelope vertices 
abscissas coinciding with the successive numbers of the maximum exponents 
(for various s values) do not differ by more than 2. 

The first of the possibilities in Eq. (7) is realized when a ,  < b, and 
correslSonds to the root e = - ( K ~ + j x n )  exp(- ta~)  of a certain sign. In this 
case, polygons F n and F.+ 1 differ as a rule by one vertex xl only, and the 
quantum state corresponding to the level g is localized at the impurity center 
occupying this vertex: 

~(x) = V,~~ -- x,) (8) 

The second possibility of Eq. (7) is the case when b~ < a ,  
a n + on+ 2 = 0, and corresponds to two roots gl,2 = •  In this case, 
polygons F~ and F,+ 2 contain different parity numbers of simple loops 
or, + 2 = -o~  and differ only by two vertices, x 1 and x 2, and the corresponding 
states are collectivized between the two centers located at these points: 

~(x) = 2-'/2[t//(~ -- x,) • ~~ -- x2) ] (9) 

Note that after a state has appeared at a center [for the first possibility 
of (7)] or a pair of centers (the second one), the centers are excluded from 
the subsequent classification of states, because otherwise, even in the zero- 
order approximation with respect to e - t  corresponding to the geometric 
systematics, the orthogonality of the eigenstates of the Hamiltonian for the 
system (1) would be violated. 

The minimum contours F,  with n vertices, with probability close to 1, 
consist of loops with small numbers of vertices (biangles, triangles, 
sometimes pentagons, etc.). In particular, simple loops F2m with m > 1 do 
not exist, because such a loop would always be able to be broken down into 
a number of biangles of a smaller perimeter. In the one-dimensional case, 
contours F ,  always consist of biangles and triangles whose vertices are 
nearest neighbors. 
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In the general case, the energy levels in the logarithmic scale, as follows 
from Eq. (7), are given by such formulas as 

S :" ,....,~ gi jXiJ  ' Z aiJ = 1 

l o, • :L2 (~) 
aiJ= o,+�89 i l  (II) 

(lo) 
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Table I. 

i (t t 

i 

a) 

Particular aij values in each case depend on the structures of minimum 
contours with n and n + p (p = 1, 2) vertices. 

The above statements are suitable to be illustrated by a comparatively 
simple, though nontrivial, example of a four-center system. Squares (a)-(d) 
of Table I contain four variants of arrangement of four impurities 
corresponding to various n-polygons F,  and various inequalities between a2 
and b 2. The left-hand uppermost square shown information for all the four 
cases. All the rest of the left-hand (upper) squares refer to the respective 
rows (columns) of the table. 

4.  D I A G R A M S  

Turning to the general classification of levels and states, it is 
appropriate to note first of all that, when the configuration of all the N 
centers (i.e., points x 1,..., xu) is given, then the structures of all the contours 
F,  having the minimum perimeters L n are uniquely predetermined. Thereby 
the sequence {L,} of minimum perimeters which are ordinates of the vertices 
of the convex envelope in Fig. 1 is uniquely predetermined, as well as all the 
energy levels and wave functions. For any transition L , ~ L , + I  or 
Ln ~ L n+2 rearrangement of the minimum contours amounts to re- 
arrangement of a few closely spaced loops. Thus, the minimum contour F ,  
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for each of the cases of rearrangement F n ~ Fn+ 1 or Fn ~ L ,+  2 breaks down 
into the nonrearranging part F ,_  m and the rearranging part F* ~ F*+I  or 
F * ~  F*+2 (here m is the number of rearranging vertices of the n-polygon 
Fn, and F* the minimum contour based on these vertices). The minimum 
perimeters accordingly consists of two terms: L n = L n _  m - ' k L * .  Therefore, 
irrespective of the number n, we may build up the classification on the basis 
of the number ' o f  rearranging vertices m and the structure of rearranging 
contours. Such classification of levels and states may be represented by 
means of diagrams, such as are presented in Tables II and III  for a m < b m 

= - -  2 b m ~ - L m + 2 - L  m . The and a m > b m,  respectively, where a m L'm+ ~ L 'm ,  * * 

number of rearranging vertices m + 1 or m + 2 will be called the diagram 
order, k. The black circles label the vertices at which the appropriate 
quantum state is localized. The spectrum description based on such diagrams 
is universal and does not depend on n or N. It is only the nonrearranging 
contour parts I ' n_ , , , ,  indicated by a large circle, that is dependent on these 
quantities; it has no influence on the systematics of levels and states. 

In order to distinguish between the diagrams, let us introduce the 
diagram-characterizing symbol 91, including the diagram type, order, and 
perhaps an additional index to indicate topologically nonequivalent diagrams 
of the same type and order. Introduce also for each diagram 91 a certain 
order of numbering of the rearranging vertices, so that the quantum state for 
type I diagrams should always be localized at the center x~ and that for 
type II diagrams should be collectivized between centers xl and x 2. Such 
denumeration will henceforth be referred to as standard (such as in 
particular the denumeration of vertices in Tables II and III). 

In terms of such diagrams, the spectrum of the four-center system for 
configurations (a) and (c) in Table I is associated with transitions F o ~ F 2, 

Table I I  

I I 
�9 

3 3 

4 O  O l  

S : 0  m 

2 z,5 * ~ , -  :%- ==, 



Spectral Characteristics of Impurity Band 

Table III. 

45  

K=m+2 

2 

@ 2 ,[ i f 2  + '  + \  + + 

~  

ae + 

5 

~ . ~ 

F 2 - / ' 4 ;  the transition F 0 ~ F 2 in both the cases and F 2 - F 4 in the case (a) 
correspond to diagram II2 (type II, order 2, see Table III), while the tran- 
sition F 2 ~ F 4 for (c) corresponds to diagram II4. For configurations (b) and 
(d), transitions Fo--F2, F2~F3, F3~F 4 are realized, corresponding to 
diagrams II2, I3, I4, respectively; the difference between the two 
configurations appears only in the e level magnitude. The expressions for a2, 3 
and b0, 2 in Table I, as well as the right-hand columns of Tables II and III, 
are examples of the general equation (10) in these special situations. 

Note a specific feature of the states represented by type II diagrams. In 
both the cases the wave function (to within exponentially small corrections, 
which are neglected in the geometric systematics) is localized around two 
centers included in / '*+2 and not / '* .  Collectivized are states between 
comparatively distant centers (e.g., 1 and 2 for diagrams II4 and II5), while 
the other centers make practically no contribution to gc At the same time, 
the energy levels are specified by the difference L*  + 2 - L *  including a larger 
number of separations. This situation is somewhat similar to that in the 
periodical structure in the tight-binding approximation: wave function 
overlapping for nearest centers causes collectivization of states at larger 
distances where no direct tunneling is possible. However, the probability of 
pairing of distant centers by virtue of higher-order diagrams numerically 
decreases rapidly with increasing diagram order. 

Till now we have considered the auxiliary problem of determination of 
the spectrum of an infinite system with a finite number N of impurities 
whose volume is of the order of V. However, the above systematics of levels 

822/38/1-2-4 
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and states is valid also for a system with an infinite number of impurities 
with the average separation 1. The physical sense of this is very simple: for 
large N and V values, random coincidence of distances x i i ' ~ x i ,  J, ~ 1 

between pairs of impurities situated far apart in the space, x u >> 1 does not 
affect the states localized in the respective regions of space (this is a 
manifestation of the additivity of the density of states and their localization). 
In terms of our systematics, this fact means that rearrangement of contours 
situated in the same region of space is not affected by the "occupied" 
vertices situated in remote regions and indicates the origin of factorization of 
the left-hand part of Eq. (6). Therefore, for the typical configuration, the 
problem of determination of the spectrum of a system with an infinite 
number of impurities reduces to an infinite number of auxiliary problems 
with finite (and seemingly small) number of centers. 

5. P R O B A B I L I T I E S  

Each configuration of impurity c e n t e r s  {x 1 ..... XN} is characterized by 
the contour sequence {F,} with minimum perimeters L n and a sequence of 
diagrams {91,} responsible for the spectrum (in increasing order of s) and the 
states. Note that since the centers have already received certain numbers, 
denumeration of vertices within each diagram differs from the standard 
denumeration introduced in Section 4. 

Divide the whole configurational space into regions A F i ,  so that within 
each of them the spectrum and the states should be realized on the same 
sequence of diagrams with the vertices denumeration conserved within each 
diagram. Then the average of any function ( f (x  1,..., Xn) ) is 3 

N Nff(x,  ..... XN) dXl . . .dXN=~N-Xfa f ( x ,  ..... XN) dXl...dx N (11) 
i Fi 

Let us now consider calculation of the mean value of a certain physical 
quantity F which has in each realization the form of a sum of contributions 
of all the diagrams to determine the spectrum 

F = ~ F~,  (12) 
n 

Let a certain diagram ~ of the kth order appear p/(91) times in the 
sequence of diagrams {92,} i specified by the region A F  i, and x (~ mj , 

3 Recall that the volume of the system in the x space is N. 
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1 ~ l ~< Pi(91) be the coordinates of the rearranging vertices involved. Then 
the contribution to the average value (F) due to all the 91 diagrams is 

pi(91) 

(F), ~ N - N  ~ f A F ( x ( t )  ( t ) ' ~ d x  d x x  k ml~'"~ Xm k] 1 " ' " 
' l=1  Fi 

(13) 

Each term, after integration over the variables which do not enter into the 
integrand, may be written as 

N N ( S (x (t) x(t)] F(-(t) _(l)a dx(*) dx~l tk m 1, ' m k ] - - \ x m l , ' " , A m k  ) r a l ' ' "  Ja 
Fil(~l) 

where AFtt(91 ) is the projection of the AF i region onto the subspace 
{x~) 1 x(t)~ and S(x~) x(t)] the volume of the section of the region AF i by ~"'~ mkJ ~..~ m k] 
a hyperplane corresponding to the fixed coordinate values, ~o) ..<t) --ml,...~ Amk* 

Now adopt the standard denumeration of vertices, i.e., substitute 
Xm:") -, x: and introduce the indicator function 

l l ,  
Z I 2 ' ( X l  . . . . .  Xk) ~--- 0 ,  

(xl ,..., Xk) C AI',(91) 
(xl ..... x 0  ~ zr,,(91) 

Then the contribution of Eq. (13) becomes 

(F)~ = f / ~ ( x  1 ..... Xk) F(x, ,..., xk) dx, ... dx k (14) 

where the function/~gl(Xl ,..., Xk) is determined by relation 

pi(91) 

/09/(Xl . . . . .  X k ) = N - N ~  ~ S,(x 1 ..... Xk)Zl~)(x, ..... Xk) (15) 
i /=1  

(note that for type II diagrams it is a symmetric function of the two first 
arguments x I and x2). 

For translation invariant function F, Eq. (14) becomes as follows: 

(16) 

Here F ~ =  {x 2 ..... Xk}, g ,  is the number of the levels generated by the 91 
diagram, i.e., 

l l (I) (17) 
g~ = (II) 
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and the functions P91(F~ are 

gglffi91(Xl,X2-[-X 1 xx) dx  I (18 )  P~(F91) = "~  ,..., x k + 

The quantities 

p91 = f P91(F~) dr91 > 0 (19) 

satisfy the normalization relation 

p91 = 1 (20)  
91 

(here summation is over all the diagrams) and therefore may be termed the 
realization probabilities of 9/ diagrams. The numerical experiments of I. M. 
Lifschitz and I. V. Masanski (unpublished) for a system of eight centers 
yield p91 probabilities listed in Table IV. It is seen that 94 % of all states are 
given by the first four diagrams of Tables II and III. 

Let us see how the above functions / ~  and P~ used for the averaging 
depend on N. Equations (19) and (20) show that the probabilities p91 and 
their densities P, (F~)  remain finite when N ~  oo. But then Eq. (18) means 
that for N ~ oo the integrand ff~ is independent of x 1, whence 

P91(F~) = g91P91(0, x2,..., x~) 

or  

(21) 

/~(x~, x2,..., Xk) = g~ 1p~(x21 ,..., Xk~ ) (22) 

Finally, we obtain for the average value of the quantity F of Eq. (12), 
by summation over all the various diagrams: 

(F) = • [ ff91(x, ..... Xk) F(xl,..., Xk) dx, ... dx k 

and for the case of translation invariant function F, 

(F) = N Z g~ if p91(;~) F(F~) dF~t 
91 

(23) 

(24) 

Table IV. 

9L 

L 
.F2 s I4 

a, o79s  0, 0422 
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6. DENSITY OF STATES IN THE MAIN 
APPROXIMATION 

In the variables s, t, the density of states p~(s, t) normalized to the unit 
volume in the x space is 

pa(s, t)-= N -1 Z 6aOm(~(S --Sin) 
m 

~foP~(S,t)ds=l 

When t ~  oo, the energy levels and states are described by the geometric 
systematics of Section 3. Therefore the maximum density of states is a 
universal t-independent function: 

p~(s) = lim po(s, t), ~ (~o p~(s)ds = 1 (25) 
t --+ O0 -7 ~o 

and for each realization may be represented as a sum over the diagrams 
entering into the sequence {gin} defining the spectrum 

I• " 1 Po(s)=N -~ O~o 6(s- -s , )+ V..~(s--s,) (26) 
L 11 n 

(the symbol above Y~ indicates the type of diagrams over which summation 
is carried out). In other words, po(s) has the form of Eq. (12), and the 
associated functions F~, are 

IN-  l~o~, fi(s - s%) (I) (27) 
r~, = (N6(s -- s~) (II) 

The levels s~, in these equations are defined by Eqs. (10) invariant with 
respect to simultaneous translation of all coordinates. Allowing for the self- 
averageness of the density of states, we find from Eq. (26), by using Eqs. 
(27) and (26), that 

p~(s)  ' i, = po(s) + p~ is) 
I 

p~(s) Z P , ( r , )  - d r ,  (28) 

1 II 

p'~'(s) = T ~ f P~(r~) &Is - s(r~)] d r .  

(summations over all the different diagrams). 
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As follows from the equations, in order to find the density of states, one 
has to construct the functions P~(F~, which is not an easy thing to do. 
However, based on simple reasons, we can judge on the behavior of po(s) in 
regions of small and large s values and also derive an interpolation formula 
to describe the po(s) behavior on the whole spectrum. 

Small s values correspond to relatively large e, I~l >> I~(/)l  . Such levels, 
clearly, are due to closely spaced pairs of impurities, when two centers are at 
a distance r ,~ l (x ,~ 1), and the other nearest neighbors are situated at 
distances of the order of the average distance from this pair. Such fluc- 
tuations have small probability and are therefore separated very far. 
Therefore the whole volume occupied by the system may be divided into 
parts, each containing one such fluctuation only. Then, in terms of the 
auxiliary problem in Section 2, in each of the parts these levels result from 
the transition L 0 ~ L / ,  where the first and the second terms of the expansion 
(6) are largest, and they correspond to the diagram of the II2 type in 
Table III; the nonarranging part marked with a large circle contains no 
impurity centers at all. A sufficient condition of realization of the 112 
diagram in this particular case is the requirement that two centers should be 
spaced by tx/[ = x  and be nearest neighbors, that is, that in the volume 
v = 9zrx 3 of the union of the two spheres with radii x and centers at the two 
impurities there should be no other impurities. The probability of such event 
p~ is obviously not in excess of the probability Pn2. 

The quantities P~(F~), as is evident from their definitions (see 
Section 5), are probability densities calculated on the condition that the 
center x I is at the coordinate origin, whence the probabilities p~ must be 
subject to the same condition of calculation. Thus, the probability p~ of the 
event discussed in the previous paragraph may be represented as 

fo f (N--v)N-z Nc~(Ix2k-x)dxz pO / = dx  KN_-- 7 

and has the magnitude 

e-'(~)47rx: dx = f e -~(~) dx (29) 

V(X) = 97~X3 

16 
o (30)  

P n 2 -  27 

The corresponding probability density PI~ is, as follows from Eq. (29), 

/ 9~r 3~ P~ = exp {-- -Txq \ 
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and the contribution of such diagram to the density of states, according to 
Eq. (28), is 

( 9 )  
p~ ) = 2m 2 exp - - ~ - ~ s  3 (31) 

For small s ~ 1 this contribution is predominant, since the probability 
of occurrence of additional built-up centers in the volume v(s) is exceedingly 
small. Therefore, for s ~ 1, 

p ~ ( s ) ~ p H ( s ) ~  o pro(s), s ~ 1 

If, alternatively, s is not small, then p~i2(s) is the contribution to po(s) of the 
type II2 diagrams in the special case under consideration (in the general 
situation, within the volume v there may be other, earlier built-up centers) to 
which now the transitions L , - 4  L,+ 2 with n >/0 correspond. Note, however, 
that the contribution of only such diagrams coinciding with the probability 
Pi~ is enough to provide almost 2/3 of the density integral. 

To large s values, by Eq. (7), correspond large magnitudes of 
differences L , + ~ - L ,  or L , + 2 - L  . .  Such values may be realized at the 
rarefied fluctuations, when one or two centers are separated from their 
nearest neighbors by distances of the order of s. Such fluctuations have very 
small probability and, as in the preceding case of dense fluctuations, are 
spaced very widely, so that the whole volume occupied by the system may be 
subdivided into parts, each containing only one such fluctuation. Then, in 
terms of the auxiliary problem, in each of the parts these levels result from 
the transition L u_ a ~ LN when the largest are the two last terms of expansion 
(6), and correspond to a certain type I diagram. 4 Because s ~> 1, there arises 
a quasi-one-dimensional situation for such diagrams. Figure 2 shows the 
right-hand part of the I3 diagram. The wave function is localized at the 
center xj well away from its neighbors (in a sphere of radius x~2 with the 
center at the point x 1 there are no other impurities). For the s level, we 
obtain 

S = X12 - -  X23 -]- X13 = 2x~2 - 2x23 sin 2 _~..O, X23 ~ 1 
z ;  

whence 

s [1 + O(s-~)] (32) X12 ~ ~ ' -  

4 The other possibility, associated with the transition L v_2--~L N and type II diagrams,  
corresponds,  for the same s value, to rarefied fluctuations of  an essentially larger volume, 
and therefore the probability of  its realization is negligible. 
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Fig. 2 

A sufficient condition of realization of this type of diagrams for s >> 1 is 
the requirement that the sphere under discussion should contain no other 
impurities. The probability density, with logarithmic accuracy, may be found 
similar to Eq. (31) [we have only to take v(x) equal to 4nx3] and therefore 
the density of states appears to be 

4~ ( 2 ) 3  p~(s) .~ p~(s), In po(s) ~ -- - - ~  , s >> 1 

By uniting this result with Eq. (31), we arrive at the interpolation 
formula 

p~,(s) = 2zrs 2 exp [--s3~t~(s)] 

where the smooth function /~o(s)~ 1 ranges from 9zr/4 =po(0) for small s 
values to zc/6 = lims_~o o p~(s). 

Figure 2 shows that the dependence x12(s ) (32) is the same for any 
dimension d, and thus, 

lnpo(s)=--c~ a ~-  , s >> 1 (33) 

where a) d -~ ~a/2/F(1 + d/2) is the volume of the d-dimensional unit sphere. 
The density of states p~ corresponding to po(s) is specified by the 
straightforward relation 

ds 
p0(~) =p~(s) dee = t- let 'p~(s) (34) 
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and becomes for 

lnp~ s(~ ] d, s~oo (35) 

Hence it follows that if d > 1, p0(e), provided that tel = e0 = etS~ where 

= ( 2at ill(a-l) 
S~ \ do.) d ] 

has a narrow (~t -(a-2)/2(a-1) wide)maximum 

lnp0 (e )_  ~ d -  1 ((2t)d I1/(a-1) 
d \d~-~a-ma ! (36) 

and when lel--' 0 ( s ~  oo), p~ tends to zero as exp[-coa(s(e)/2)a], that is, 
there is a gap in the density of states which was predicted by Refs. 1 and 2. 
Therefore, for large s, one has to calculate the contribution to the density of 
states due to the parameter t being finite, though very large (see Section 8). 

In the one-dimensional system (d = 1) the density of states at the center 
of the impurity band has, according to Eqs. (33) and (35), an integrable 
singularity: 

p0(~) ~ t-1 i~l-l+t 1 (37) 

and for this reason the above-mentioned contribution is always small. In 
particular, in the Frish-Lloyd model (3) with attraction, in complete 
agreement with the exact solution, (4'5) we obtain from Eq. (37): 

p0(t~) ~ C [el -1-~1/(/1"E0[ 1/2)9 c = (2t) ' 

It is worth mentioning that a more detailed investigation enables us to 
detect the asymmetry of the numerical factor predicted by the exact 
solution. (4'5) Indeed, the level s >> 1, in the one-dimensional case, can arise 
from realization of either diagram I3 (Fig. 3) or diagram I4 (Fig. 4). The 

5 2 t 5 
u C, ,.~ �9 O 

0 --- 0 

Fig. 3 
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0 ~ �9 0 

0 u - - u  - -  0 
3 2 t 5 

Fig. 4 

figures show the rearranging diagram parts and a distant center (5); here 
x12 = s/2 >> 1, x15 > s/2, and x23 --~ x~4 ~ 1. The diagram in Fig. 3 generates 
the level s, the respective e value being e =  2 IE01 exp(- ts) ,  while for the 
diagram of Fig. 4 the level s -  2x23 < s corresponds to e = 
- 2  IE0l exp(--ts + 2tx23 ). A simple calculation shows that because of such 
difference, the densities of states p~ for e > 0 and p~ for e < 0 are 
related in the range I~1-~ 0 as 

Cp+(l~l) =p-(l~l) 

where C is a certain positive number larger than unity (in the exact solution, 
c=2). 

7. DENSITY-DENSITY CORRELATION FUNCTION 

Now let us claculate the density-density correlation function, specified 
by relation 

P(X' X'; ~' Ct)= ( Z  Iffff(X)Iffp(X')l[.l~m(X')l~lm(X)(~(F,--F,p)(~(~, t --Cm) ) 

(in the impurity bands the states are real, and we shall below omit the 
complex conjugation symbol), and represent it as a sum of the diagonal and 
nondiagonal terms as follows: 

ds 
p(x ,x ' ; e , e ' )=  ~ ~ ,o ,~ ( s - s ' )p l (x , x ' ; s ,a )  

ds ds' 
+ d-~d~-e' pE(x 'x ' ;s 'o;s"a ' )  (38) 
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Here 

Pl(x, xI; s, ~7) = ( ~_~m N2m(X) gt2(X') f ,rUmC~(S -- Sm) ) 

p2(x, x'; s, o; s', o')  (39) 

= ( ~ V ~llp(X) l//p(Xt)qlm(Xt)qlm(X)(~o.o.v(~o.,O.rn(~(S__Sp)~(S' __Sm)) 
p,m (p~m) 

Consider first pl(x, x'; s, a) the density-density correlation function for 
coinciding energies, in the variables s, e. Passing in Eq. (39) to the limit 
t - ,  oo from summation over levels to summation over diagrams, we see that 
the right-hand side of this equality has the structure of Eq. (12), where 

2 2 t 
F ~ =  t 6 ~  -- s~) ~ ( x )  ~u~(x ) (I) 

2 2 t I ~(s -- s~) q/~o(x) g/~(x ) (II) 
(40) 

The states q/~(x) (I) and ~,~o(x) (II), in the main approximation, according 
to Eqs. (8) and (9), have the form (standard denumeration) 

~ ( x )  = ~{~ - x l )  

g/~,x(x) = 2 - 1 / 2 [ g / ( ~  _ _  XI ) A- O'~./(O)(x --  X2)] 

(I) 

(II) 

Averaging Eq. (40), taking into account Eqs. (22) and (23), the symmetry of 
P~ for type II diagrams with respect to the first two arguments and the fact 
that for distances of the order of 1 (the average separation of impurities) 
[g/~ =d(x) ,  we have the following for the contributions of I and II 
diagrams to PI: 

pI1 = p~(s)  a(, ,  - v )  

p ~ I =  1 II 1 [ 
~-p~ (s) 6(x -- x') + -4- Pu2(s) 6(s --Ix  -- 

II x2=x'-- x + 2 f{P~,(v,Oa[s-s(r~)]} dx  3 
k>2  

91 

P l  =" p l l  + P l  I 

x'l)  

�9 .. dxk] 

(41) 

(42) 

(43) 

As regards the nondiagonal part P2, it is for t--+ oo (i.e., in terms of the 
geometric systematics of Section 4) contributed to by only the pairs of levels 
n, m, referring to the same type II diagram and corresponding to energies of 
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different signs. The expression for P2 may also be reduced to the form of 
Eq. (12); this time, F~ is 

lO (I) 

F ~  = ,~ o _ ~ ,  (~(s - s '  ) (5(s  - s '  ) (~( s - s ~)  ~/~o(x) ~,~(x') W~,(x') ~,~,(x) 
0I) 

By averaging these expressions, we obtain for P2 a result which differs from 
Eq. (42) by the sign before the square brackets and the presence of a new 
multiplier of the form of 8~ ,_ ,~ , (5 ( s  - s ' ) .  

The final result is 

ds 
p(x,x';~,~')= U~ ~(Ict-I~'l)p(x,x';s;a,o') 

p ( x ,  X;; S; 0", 0 "t) = ~(X --  Xt)[(~GGtpI(s) -~ l p I I ( s ) ]  

+ (--1)(~-~ [ Pro(s) 6(s --Ix -- x' I) 

+ v f {P~(r~)6[s- s(r~)] dx3.. ,  dXk (44) 
x 2 -  x ' -  x 

(k>2) 

Hence we see that the density-density correlation function, in the main 
approximation (t ~ oo after transition to the variables s, a) corresponding to 
the geometric systematics is nonzero only for energies differing by no more 
than the sign. Being a function of the spatial variables, this correlation 
function (as pl and P2) consists of three terms, two of which are singular and 
are nonzero only for the points x and x' which either coincide or are situated 
at exactly the distance s. The third summand is a smooth function; however, 
when I x - x ' l  < s it is zero. At s < ] x - x '  t it consists of contributions of 
peculiar states of type II which collectivize comparatively widely separated 
centers (see Section 4). 

8. DENSITY OF STATES AT THE BAND CENTER 

Up to now our study has been based on the geometric systematics of 
levels and states which arises in the limit t ~ 0o. However, allowance for the 
finite, though large, value of the t parameter results in broadening of the 
boundaries of the A F  i regions (see Section 4) and conversion into bridges 
with a finite thickness ~ t -1  outside which the geometric systematics holds. If 
the contribution of states it describes becomes small, one has to include that 
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of the states generated by the small probability configurations belonging to 
the bridges. 

The finiteness of the parameter t must first of all affect the behavior of 
the density of states p(e) at the band center, e ~ 0, because this quantity 
calculated in terms of the geometric systematics (34) goes to zero when 

~ 0, according to Eq. (35). We shall consider, as we did in the second half 
of Section 7, the auxiliary problem with a finite number N of impurities, 
assuming that in the system no more than one rarefied fluctuation exists and 
the largest s value corresponds to the situation that the largest are the two 
last terms in Eq. (6) and thus s u is given by equation 

K N - ~ e - " t N - L N  ~) (45) e - tsN ~ - - ~ N  

K N - -  l 

In the geometric systematics (i.e., when t ~  oo) the quantities L n 
coincide with Ln perimeters of minimum n-polygons and therefore large s 
arises only on a rarefied fluctuation of a very large radius. However, when t 
is finite, another possibility appears, which can be seen, if we write the coef- 
ficients Qu of Eq. (3) as 

Qev = K u e  tEN = KN(e--tLN __ e - tL ;v )  (46) 

Here the first terms arises from a minimum N-polygon and the other ones 
whose parity of the number of loops coincides with that of F N, and the 
second is the contribution of N-polygons with the number of loops of the 
opposite parity. Then, Eq. (45) for the maximum root s N becomes 

s u = ( L U - L N _ l ) - t  1 ln{ 1 - e x p [ - t ( L ~ -  s } (47) 

When t ~ oo,  L u - +  LN, and also - '  L N > L N, so that the latter equation 
reduces to the above equation (7): 

SN ~-  L N  - -  L N -  1 

On the other hand, for finite t, large s, as is suggested by Eq. (47), may be 
provided not only by the first, but also by the second term. This is the case 
when L} and L, x defined by Eq. (46) are anomalously close: L } - L , N ~  
t - t  exp(-tsu). The probability of such event is very small, however, for very 
large s, it becomes, as we shall see, larger than that of the rarefied fluc- 
tuation leading to Eq. (35). 

Since, for t--+ co, the Lu and L~ quantities coincide with the L u 
perimeter of the minimum N-polygon and the L~ perimeter of the minimum 
N-polygon with the number of loops of the opposite parity, then resonance 
coincidence of ~T-, N and L )  admits of a clear geometric illustration (see Fig. 5 
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2 

t 

4 

4 

Fig. 5 

representing pentagons consisting of one and two loops and having equal 
perimeters). Actually, however, large s require coincidence, with exponential 
accuracy (~e t'-Int) of LN and L )  differing from minimum perimeters L N and 
L )  by an amount of the order of t - l .  Therefore the configurations under 
discussion in this section are close to fully degenerated configurations, like 
that shown in Fig. 5 (though they are not exactly such). 

The representation (46) is valid not only for the last, but also for all the 
preceding coefficients Qn with n > 4, and therefore there may be resonance 
coincidences of Ln and L~, (n < N), resulting in anomalously small coef- 
ficient Q, and, on the contrary, anomalously large effective perimeter L n. 
This ~'act, however, does not affect much the structure of levels and states 
with n < N of the auxiliary problem. For one thing, the probability of the 
resonance coincidence alone is very low. For another, the coincidence, in 
case of moderately large n's, does not, as a rule, lead to appearance of the 
respective level with s >> 1. Indeed, allowance for the finiteness of t leads first 
of all to loss of the literal geometric sense of the quantities Ln, with the 
whole analysis of Section 3 retained in general outline for large t. In 
particular, the process by which the roots of Eq. (6) appear is still described 
by Fig. 1, the ordinate being, however, the effective perimeter L ,  instead of 
the true perimeter L~. If some effective perimeter L n is anomalously large 
because of Ln and - '  L ,  resonance coincidence, then in the subsequent terms of 
Eq. (6) with more numbers, the resonance, with overwhelming probability, 
disappears. This means in Fig. 1 that the point (n, L , )  does not belong to the 
convex envelope and does not therefore participate in the spectrum 
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formation. [Note that the point (N, LN) always belongs to the convex 
envelope.] 

When passing from the auxiliary problem to initial (i.e., in the limiting 
process N ~  oo, V~  oo, VINyl3), the situation alters. For very large, 
though still finite, t, the convex envelope in Fig. 1, in the near-N range of n 
corresponding to the last levels with s >> 1, is a very rapidly increasing 
function. The small probability of the level with s >> 1, as a result of the 
resonance coincidence of Ln ~ ~"  for n ~ N, becomes, as we shall see, larger 
than that of the rarefied fluctuation generating the levels with the same s 
value. Therefore, it is the Ln, L" coincidence for different, though close to N, 
n values which is responsible for the macroscopic number of levels with 
s >> 1 (proportional to N, for N ~  oo). 

The finiteness of t slightly distorts the quantum states obtained in terms 
of the main approximation. They continue to be localized mainly at one or 
two centers, but the coefficients in formulas similar to Eqs. (8) and (9) are 
somewhat different from 1 and 2 I/2, because the right-hand part receives 
slight admixture of states localized at other centers. Essentially different are 
the states corresponding to the levels appearing as a result of the L,,L'~ 
resonance. Here, since the effective perimeter L ,  is formed by all impurity 
centers, the corresponding state collectivizes a large number of centers. 

We have till now discussed the transition n - 1 ~ n. One would think 
that a different situation is possible, with the transition n -  2 ~ n realized. 
However, as we shall see below, the states forming the density of states at 
the band center are associated with special configurations, the site of 
simultaneous realization of the pertinent L,,L', resonance and the large 
radius rarefied fluctuation whose volume at the transition n - 2 ~ n is essen- 
tially larger than that at n - 1 ~ n and the associated probability essentially 
smaller. 

Now turn to calculation of the density of states p~(s, t) at the band 
center (s ~ oo) and introduce the function Po(:c,y)  which is the average of 

in the case of N - 1  ~ N  and equals zero in the opposite case. From 
Eq. (47), we obtain for the density of states that 

p~(s,t)= dx d f ~ [ s - x + t - l l n ( l - e - ' ~ ' ) l P ~ ( ~ , e )  

Since t ~> 1, allowance for the t-dependent term in the argument of the ~ 
function is necessary only for very small values of y ,  • ~ t-le -ts. Therefore 
in the range • > • 0, where g0 is of the order of, e.g., t -z, this term may be 
disregarded. By extending then integration to the entire semiaxis ~ and iden- 
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tifying LN and L N_ 1 with L N and L N_ 1 ,  respectively, obtain, to within the 
magnitudes of the order of t-1, the contribution to the band center density of 
states calculated above in Section 6: 

;i p~(s)  = P~(s,  Z/) d ~  (48) 

The contribution of resonance configurations with L N ~ L N is related to the 
integral over the small ~ range: 0 < ~ < Y0. By integrating over y ,  we have 

= s - 

p * ( s , t ) = p ~ ( s , t ) - p ~ ( s ) , . ~  e t z p o ( s - z , O ) d z  (49) 

Both the contributions, (48) and (49), are expressed in terms of the 
same function P~(a~, y )  essentially facilitating the further analysis. Because 
p~(s)  for large s has the form of Eq. (33) 

In p~(s)  ~ - 2 - Q o a s  d 

and the geometric systematics is insensitive to the magnitude of y = L } -  J~--~N 
then it is natural to think that In Po(~, y )  has for x ~ m in the main order 
the same asymptotic value: 

In P, , (x ,  ~ )  ~ - 2  -%9 a a~ d (50)  

By substituting Eq. (50) into (49) and allowing for the relation [see Eq. (34)] 

p(e)  = t-1erupt(s ,  t) 

obtain 

In p(e) = ts + In po(s, t) = 
ts - 2-dfl)dSd , 1 ~ S ~ S o 

((2t)d)  , / (a- , ,  
/ , s0 s 

(51) 

Thus, the density of states p(~) for s >> 1 up to s = s o is governed by 
states given by the geometric systematics, realized at rarefied fluctuations of 
an ever increasing (with s) volume and localized at the impurity situated at 
the center of the volume. For s > s o (in the vicinity of the gap predicted by 
the geometric systematics) the main energy-independent (with logarithmic 
accuracy) contribution to the density of states p~(s, t) is due to the term 
p*~(s, t). The corresponding configurations are also associated with rarefied 
fluctuations; however, now the fluctuation radius is fixed, / ,N- - / ' u  I = SO 
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and the s increase is only due to increasingly close coincidence of L~ and 
LN. The gap in the density of states p~ is partially filled; still p(e) has a 
minimum at e ~ 0, though [see Eq. (36)] 

In p(0) ~ in p*(oo, t) ~ In p~ 

The states filling up the gap, as has been said, collectivize a large number of 
centers. 

9. GENERAL SPECTRUM STRUCTURE 

With the results obtained above, we can descirbe the impurity band 
spectrum structure (see Fig. 6). To begin with, let us discuss the case of low 
concentration, e ~ ecr (t >> 1), where all states are localized (such states are 
shown as the shaded area in Fig. 6). Near the boundaries eg and fg the 
spectrum is produced by macroscopic fluctuations (see, e.g., Ref. 6). As l el 
decreases, we gradually go into the cluster region associated with dense fluc- 
tuations, where a small number (2, 3) of centers are spaced by distances 
much smaller than the average, I. This area may be investigated by 
expansion in the concentration c ~  t -d .  (1'2) Still smaller values, [e[ ~ ]e(/)] 
correspond to states described by the geometric systematics. Their density 

! 

Fig. 6 
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for s >> 1 is given by Eq. (33). Finally, in the closest vicinity of the point 
e = 0 the main role belongs to collectivized states which are realized on 
resonance configurations considered above in Section 8. The width of this 
region is in the logarithmic scale of the order of t -el(a- 1) and, as dimension 
d increases, tends to the whole spectrum width which in the same scale is 
t -1. This is quite natural since with increasing dimension of the space, 
delocalization becomes easier. In the vicinity of the curve c=ccr (e  ) 
separating localized and delocalized states (area bounded by two broken 
lines in Fig. 6), where fluctuational effects must dominate, one can hardly 
indicate any method characterized by a finite number of parameters to 
describe the state. The situation there seems to be much the same as in the 
vicinity of the II order phase transition point (scaling region) or in a 
turbulent liquid, where fluctuations are developed so highly that in all scales 
of an infinite hierarchy the picture of the phenomenon is practically the 
same. 

The initial stage of development of delocalized (extended) states outside 
the immediate neighborhood of the band center may be analyzed by Eq. (6) 
describing the level distribution in the auxiliary N-center poblem. The case is 
possible of coincidence, to within t - l ,  of successive differences of minimum 
perimeters 

L n + l -  L n ~  Ln--Ln_l ~ (...) 

o r  

L~+2- -Ln~Ln- -Ln_2~  ( '") 

Then, with certain s value, several terms of expansion of determinant (2) are 
of the same order simultaneously, suggesting appearance of multiple roots 
(with logarithmic accuracy) of Eq. (6). If, in addition, the rearranging parts 
of contours intersect, then the states involved, unlike in the situation 
considered in the end of Section 5, collectivize all the rearranging centers. 

We deal here in fact with origination of periodical center arrangement. 
Indeed, it is in the periodical case that special-type resonance situations 
arise, associated with coincidence of distances xik, Xkl .... between successive 
pairs of centers, which then leads to smooth level distribution in the band 
and complete collectivization of states. 

Such states have low density, because the portion of the "degenerate" 
configurations is of the order of t -k, as defined by the width of the bridges 
discussed in the beginning of Section 8 (the exponent k is due to multiplicity 
of degeneracy of the respective s root). Their contribution to many-point 
correlation functions, however, can be essential. In particular, the n-point 
correlation function (n > 2) is a sum of singular terms containing from one 
to ( n -  1) 6 functions [cf. Eq. (44)] and a slowly varying term. The terms 



Spectral Characteristics of Impurity Band 63 

with the ( n -  1) and ( n -  2) fi functions are generated by the geometric 
systematics and do not depend on the concentration, while the rest of them 
are associated with degenerate states and are proportional to t -k, where 
(n - 2 -- k) is the number of fi functions. In particular, the slowly varying 
terms is proportional to t -("-2). 

In case of low concentration (t ~ 1) the slow terms in the many-point 
correlation functions are also small, because they consist of contributions of 
small probability chains of resonance-percolation paths having all the links, 
to within t -1, equal. Such a chain is only realized with finite probability, 
when t < tcr, where tcr is the concentration boundary of mobility (state 
delocalization). 

The parameter t above defines simultaneously all the significant charac- 
teristics. On one hand, the overlapping integral for medium distances J ~  e - t  

responsible for tunneling between centers estimates the energy region where 
state delocalization is in principle possible (through development of an 
infinite cobweblike resonance-percolation net, built up on impurity atoms). 
On the other hand, t -1, when t>> 1, defines the order of magnitude of 
possible fluctuations of the net mesh sizes and, consequently, the net relative 
phase volume tends to zero in the limit V ~  oo. As t decrease (i.e., concen- 
tration c ~ t - a  increases), the number of centers in the volume k o  a equal to 
cw  a grows and, when ~oat -~  >> 1 (d >/3) ,  there appears a band of delocalized 
states, which is why the mobility boundary estimate in this model is t~r ~ 1. 

Thus, for c > C~r (t < tcr ), in a certain vicinity of the local level the 
states are delocalized. However, the spectrum near the boundaries has a fluc- 
tuational nature. As the concentration increases, the delocalized state region 
becomes broader and when Cma x - - C  "~ Cma x (here Cma • is the maximum 
impurity center concentration corresponding to a completely ordered system) 
the fluctuation levels fill up only minor vicinities of both the boundaries. 
Finally, for c = Cmax all states are evidently delocalized. 
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